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SUMMARY

Developing Couette–Poiseuille flows at Re=5000 are studied using a low Reynolds number k–e
two-equation model and a finite element formulation. Mesh-independent solutions are obtained using a
standard Galerkin formulation and a Galerkin/least-squares stabilized method. The predictions for the
velocity and turbulent kinetic energy are compared with available experimental results and to the DNS
data. Second moment closure’s solutions are also compared with those of the k–e model. The deficiency
of eddy viscosity models to predict dissymmetric low Reynolds number channel flows has been
demonstrated. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well-known that k–e models like other turbulence closures are not valid in the viscosity
affected near-wall regions. The popular wall functions method, which is based on the assumed
universality of the law of the wall, avoids completely the solution of the transport equations
in the wall region. However, the notion of the law of the wall and the assumption of a
logarithmic universal velocity profile are in clear contradiction for flows with regions of
recirculation (separation and reattachment). An alternative to using wall functions is to employ
turbulence models that are valid all the way to the wall, called ‘low Reynolds number’
treatments or models. These models are obtained by adding extra terms to the transport
equations and by introducing damping functions to take into account the change in the
turbulence structure in the wall regions. In this study, the latter approach is utilized to simulate
low Reynolds number turbulent Couette–Poiseuille flows.

Various low Reynolds number k–e models have been proposed over the past two decades.
These models can be roughly divided in two groups. The first group models are empirical ones
that are introduced, before the mid 1980s, so that predictions can match the rather limited
experimental data in the near-wall region. Patel et al. [1] studied various near-wall k–e models
and concluded that none was entirely successful in predicting the essential features of the flow
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close to a wall, even in the relatively simple cases of two-dimensional attached steady flows.
Recently, advances in direct numerical simulation (DNS) of turbulent flows have provided in
the literature extensive qualitative and quantitative information on the structure of the viscous
sublayer and buffer layer. Consequently, models based on the DNS results have been
introduced (see e.g. Rodi and Mansour [2] and Michelassi et al. [3]). These models are tightly
tuned by modifying model constants and damping functions to render DNS data under
particular conditions (e.g. fully developed plane Poiseuille flows). In this study, Chien’s [4] low
Reynolds number k–e version, which is an empirical model, is employed to resolve the wall
region. The authors have chosen this model for the following reasons. First of all, previous
numerical experiments with Chien’s model to simulate channel flows (see Monnier [5] and
Monnier and Stanislas [6]) have shown that this model behaves rather better than other
empirical ones and is numerically more stable and robust. Secondly, in this version, the extra
terms introduced to the transport equations of k and e are more easily implemented using a
finite element method. Other models contain terms that depend on second-order derivatives of
the mean velocity. Computations are also conducted by modifying damping functions of
Chien’s model by those proposed by Rodi and Mansour [2], which are based on DNS data.

The overall success of all turbulence models on solving complex industrial flows depends
largely on the behaviour of these models in predicting benchmark experimental flows.
Unfortunately, experimental results are not always very complete. For example, inlet condi-
tions are not well-defined and not all turbulence properties are measured. Fully developed
turbulent one-dimensional Poiseuille flows are among the reference problems that have been
extensively used in the literature to study the performance of different turbulence models.
Today, DNS data is also used as an alternative. However, fully developed symmetric flows
between fixed walls do not seem to be sufficient to provide a complete validation of models.
The lack of detailed experimental results has motivated researchers to define other experimen-
tal test cases that have not only a simple geometric configuration, allowing them to be treated
equally by DNS, but are also physically sufficiently complex. Recently, at the OMERA-IMFL,
an experimental set-up was constructed which allows the so-called turbulent Couette–Pois-
seuille flows to be obtained (see Corenflos [7]). These flows are induced between two parallel
plane walls by imposing a pressure gradient and the uniform motion of one of the walls. A
great variety of velocity profiles can be obtained by modifying the velocity of the moving wall
(Figure 1). Note that for the intermediate-type flow, the shear stress at the moving wall
vanishes. The experimental set-up can be divided in two parts. In the first part, a pure
(symmetric) Poiseuille flow is developed between two fixed walls that can be used as inflow
boundary conditions for two-dimensional numerical computations (see Figure 2 for details). In

Figure 1. Couette–Poiseuille flows, 1, Poiseuille-type flow; 2, intermediate-type flow; 3, Couette-type flow.
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Figure 2. Domain and boundary conditions.

the second part, where one of the walls is moving, turbulent Couette–Poiseuille flows are
obtained. Experiments are performed using air at a Reynolds number of 5000 based on the
mean bulk velocity and the channel height. These flows have already been the subject of a
Workshop [8] organized by ERCOFTAC at Karlsruhe, Germany, in 1995 for testing different
turbulence models.

In this paper a finite element method is employed to study the characteristics of turbulent
Couette–Poiseuille flows and to validate Chien’s turbulence model for dissymmetric flows at
low Reynolds numbers. The development of turbulent Couette–Poiseuille flows is another
subject that is investigated in this work. Special attention is devoted to determine complete,
fully developed mean velocity and turbulent kinetic energy profiles and to compare the model
predictions with the experimental results at the developed sections.

Two different finite element formulations have been used in this study. Reynolds averaged
Navier–Stokes equations and k–e equations are discretized using a standard Galerkin finite
element formulation, employing bilinear elements for all dependent variables except for the
pressure. The pressure is determined using a penalty approach. To examine the influence of
numerical scheme on the accuracy of the predictions, the Galerkin penalty method is replaced
by a stabilized Galerkin/least-squares (GLS) formulation employing equal-order biquadratic
(serendipity) velocity–pressure elements. Serendipity elements are also employed for k and e

variables using a standard Galerkin formulation.

2. GOVERNING EQUATIONS

The mathematical model consists of the following Reynolds averaged Navier–Stokes and
continuity equations for incompressible two-dimensional flows
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(ū
(x

+
(neff

(y
(6̄

(x
, (1)

ū
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In Equations (1) and (2), ū and 6̄ are horizontal and vertical components of the mean
velocity vector respectively. p* is a quasi-pressure defined by (5) and neff is the effective
viscosity defined by (4). nt and n are turbulent (or eddy) and molecular kinematic viscosities
respectively. In Equation (6), k is the turbulent kinetic energy, ẽ is the rate of dissipation
defined below, Cm is a model constant and fm is a damping function introduced to take into
account the wall regions.

Equations (1) and (2) are solved in conjunction with the following low Reynolds number
k�ẽ model as proposed by Chien [4]:
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is the turbulent production and u %iu %j are the Reynolds stresses that are related to the rate of
strain of mean flow
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Indeed, the addition of Reynolds stresses (11) to laminar stresses in Navier–Stokes equa-
tions introduces the auxiliary terms present in Equations (1) and (2) and redefines the pressure
term via Equation (5).

Extra terms D and E, damping functions and model constants, are defined as follows:

e= ẽ+D, (12)

D=2n
k
y2 , (13)

E= −2n
ẽ

y2 exp(−0.5y+), (14)
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f=1.0−0.22 exp(−Ret/6)2, (15)

fm=1.0−exp(−0.0115y+), (16)
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In Equations (14)–(16), Ret=k2/ne is the turbulent Reynolds number and y+ =uty/n,
where ut is the friction velocity defined by ut=
t/r, t=m(du/dy) is the friction and r is the
density of the fluid; m is the dynamic viscosity.

3. FINITE ELEMENT DISCRETIZATION

A finite element method is used to discretize Equations (1)–(3) and (7) and (8). Two different
finite element formulations are utilized in this study to examine the influence of the formula-
tions on the results. The first method consists of using a standard Galerkin formulation for
both Reynolds averaged Navier–Stokes equations (1)–(3) and k–e transport equations (7) and
(8). Bilinear elements are employed for velocity components ū, 6̄ and k�ẽ variables. Pressure is
assumed constant on each element and is eliminated at the element level using a penalty
approach. The second method consists of applying a stabilized Galerkin/least-squares (GLS)
formulation [9–11] to Equations (1)–(3). This formulation stabilizes the velocity and pressure
variables by adding to the Galerkin formulation mesh-dependent terms that are weighted
residuals of the original transport equations. Therefore, the GLS method provides a consistent
stabilized scheme that allows flows at high Reynolds number or with steep gradients to be
solved without encountering numerical instabilities and without accuracy degradation. The
GLS method circumvents also the satisfaction of the Babus' ka–Brezzi (BB) condition (see,
Babus' ka [12] and Brezzi [13]), allowing the implementation of equal-order velocity–pressure
elements. In this study, the GLS method has been applied to Equations (1)–(3) employing
biquadratic (serendipity) equal-order velocity–pressure elements. k and ẽ transport equations
are solved using a standard Galerkin formulation employing biquadratic (serendipity) ele-
ments. The complete details of these formulations for laminar flows are readily available in
literature (see e.g. [9–11] and Hannani et al. [14]).

A classical Newton–Raphson method was found suitable to linearize the Reynolds averaged
equations. For the linearization of the source and sink terms of k and ẽ transport equations,
a method traditionally used with finite volume methods has been used (see Hannani [15] for
details of the solution strategy).

3.1. Computational domain, boundary conditions and mesh systems

The computational domain is depicted in Figure 2. The inflow conditions are imposed at a
distance of 1.455 m in the upstream of the moving wall, as recommended by Corenflos [7]. The
inflow boundary conditions correspond to a pure Poiseuille flow at Req=uqH/n=5000, where
uq is the mean bulk velocity and H is the channel height. In a first attempt, experimental
profiles are imposed at the inflow. However, experimental k profiles are not very accurate near
the walls because of the excessive dimensions of hot wires in wall regions (see Corenflos [7] and
Deldicque [16]). Consequently, numerical profiles obtained from a one-dimensional computa-
tion of a pure Poiseuille flow are assumed at the inflow, as this leads to a more stable and
consistent computation. Computations using experimental and numerical inlet boundary
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conditions showed that the developing length is independent of the inlet boundary conditions.
No-slip boundary conditions are prescribed for velocity variables (ū, 6̄), and k=0 and ẽ=0.
In accordance with Corenflos [7] and Deldicque [16], uw/uq=0.790, 1.224 and 1.490 for
Poiseuille-type, intermediate-type and Couette-type flows respectively. uw is the moving wall
velocity. At the outlet, zero streamwise gradients are assumed for all variables except for 6̄,
which is set to zero.

A moving wall length of 1.38 m (L�42H) has been used in the experiment of Corenflos [7].
Preliminary calculations using a moving wall length of 40H, 90H and 120H demonstrated that
the required length for development depends strongly on the type of flow. Results showed that
for the Poiseuille- and intermediate-type flows, a moving wall length of 90H (4.4 m) is
sufficient to obtain a fully developed flow at the outlet. This is almost twice the length used in
the experiment. However, for Couette-type flow, the computation did not produce a fully
developed flow at the outlet, even using a moving wall length of 120H. For each type of flow,
one-dimensional calculations are conducted and results are compared with fully developed
profiles of two-dimensional calculations. For the Poiseuille-type and intermediate-type flows
excellent agreement between 2D and 1D computations are observed. For the Couette-type
flow, kinetic energy profiles do not reach to a fully developed condition.

For one-dimensional calculations, three mesh systems of 100 and 180 bilinear elements and
50 biquadratic serendipity elements are used to examine the influence of the mesh size on the
solution accuracy. In each case, the first node is situated at y+�0.5. Complete mesh-indepen-
dent and element-independent solutions are obtained for the one-dimensional calculations. For
two-dimensional developing flows, two mesh systems consisting of 50×100 and 80×100
bilinear elements refined in the wall region and at x=1.69 m (see Figure 3) are used to
examine the influence of the mesh system. Computations are conducted using the two different
formulations mentioned in Section 3, with comparable mesh systems. A mesh-independent
solution is obtained using 80×100 bilinear velocity–constant pressure elements or 40×50
serendipity equal-order velocity–pressure elements. Results are completely independent of the
formulation used, except at x=1.69 m due to the stabilizing effects of the GLS method near
the discontinuity.

4. RESULTS AND DISCUSSION

Computations are conducted for four different type of flows. First of all, the computational
procedure is validated by studying a one-dimensional pure Poiseuille flow at Req=5000. Then,
two-dimensional Poiseuille-type, intermediate-type and Couette-type flows are studied.

4.1. Pure Poiseuille flow

For a one-dimensional pure Poiseuille flow, the Reynolds averaged equations simplify to

(
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In this case, to start the computations, the friction velocity or pressure gradient is required
a priori. Friction velocity for the pure Poiseuille flow is measured by Corenflos [7] (ut=0.162
m s−1). However, imposing the experimental friction velocity into Equation (17) is not in
general consistent with the turbulence model used for the following reasons. First of all, the
experimental friction velocity is often approximate and errors are present during its measure-
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ment and evaluation (see Corenflos [7] and Deldicque [16] for details). Secondly, the friction
velocity is indeed the outcome of the computations (by virtue of the velocity profile near the
wall) and it depends on the turbulence model used. Therefore, imposing a friction velocity
other than the value consistent with the model does not in general preserve the mass flow rate.
For symmetric pure Poiseuille flows, imposing the friction velocity does not change other
characteristics of the flow. However, for dissymmetric Couette–Poiseuille-type flows, imposing
a wrong friction velocity may produce strong modifications of the velocity and k profiles. For
example, an intermediate-type flow may change to a Couette-type flow by a slight modification
of the input friction velocity (see Hannani [15]). To overcome this difficulty, one can iterate on
the friction velocity to obtain a mass flow rate consistent with the experimental results. This
method is utilized in this study.

The fm damping function of Chien’s model (Equation (16)) depends on the friction velocity
ut and the distance (y) from the wall. For Couette–Poiseuille-type flows at low Reynolds
numbers, this definition encounters two difficulties. One is due to the fact that the distance

Figure 4. (a) Mean velocity for pure Poiseuille flow; (b) turbulent kinetic energy for pure Poiseuille flow.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 83–103 (1999)
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Figure 5. Turbulent kinetic energy for pure Poiseuille flow, influence of fm damping function.

Figure 6. Development of mean velocity for Poiseuille-type flow using Chien model, experimental profile at x=2.955
m is compared with numerical profile at x=4.4 m.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 83–103 (1999)
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Figure 7. (a) Mean velocity for Poiseuille-type flow; (b) turbulent kinetic energy for Poiseuille-type flow.

from the walls for dissymmetric flows is not clearly defined. Note that for the flows and the
Reynolds numbers studied here, the wall region extends up to the central region of the channel.
The second problem is due to the fact that the friction velocity vanishes on the moving wall
for intermediate-type flow. A solution opted in this study consists of using a local friction
velocity for ut in (14) and (16). This method is called ‘local Chien model’ in this paper. In this
case, y is the smallest distance from each wall. This section will study the influence of these
modifications on the predictions, for the pure Poiseuille flow.

Figure 4(a) and (b) present the mean horizontal velocity (ū) and turbulent kinetic energy (k)
for the pure Poiseuille flow using a local Chien model. Results are compared with the
measurements of Corenflos and with the DNS data of Kuroda et al. [17]. On these figures, the
prediction of a second moment closure obtained by Deldicque [16] based on Jakirlic et al.’s
Reynolds stress model [18] is also shown. Deldicque examined the performance of the models
of Jakirlic et al. [18], Gibson and Rodi [19] and Shima and Launder [20], by computing

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 83–103 (1999)
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one-dimensional fully developed Couette–Poiseuille flows at Re=5000 and 10000 and con-
cluded that the model of Jakirkic et al. provides the best results compared with the experiment.
As can be seen from Figure 4(a), the velocity profile obtained by Chien’s model is neither in
good agreement with the experiment nor with the results of other methods. In addition, the
minimum of k at the centre of the channel is overestimated by the k–e model and the peak of
k is positioned somewhat farther from the walls than the DNS and SMC predictions (Figure
4(b)). To remedy this behaviour of Chien’s k–e model, the authors calculated the fm function
in (6) using the friction velocity defined classically at walls, called here the ‘non-local Chien’s
model’. In Figure 5, the turbulent kinetic energy profiles are depicted using local Chien and
non-local Chien models. One notes that using the wall friction velocity improves the prediction

Figure 8. (a) Mean velocity for Poiseuille-type flow, x=2.955 m, influence of fm damping function; (b) turbulent
kinetic energy for Poiseuille-type flow, x=2.955 m, influence of fm damping function.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 83–103 (1999)
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Figure 9. Turbulent kinetic energy profiles at x=1.855 m and x=2.225 m, comparison with experiment.

of k. In a second attempt, the fm function of Chien is replaced by the following function
proposed by Rodi–Mansour [6], based on DNS data:

fm=1−exp(−2×10−4y+ −6×10−4y+2+2.5×10−4y+3). (18)

This function leads to improved prediction of k (Figure 5). Indeed, using a non-local friction
velocity and also using a function that asymptotes more rapidly to 1 improved results. It can
be concluded in this section that for flows at very low Reynolds numbers, the definition of
damping functions has a strong influence on the results. This point has a more pronounced
effect for dissymmetric Couette–Poiseuille flows (see below).

4.2. Poiseuille-type flow

In Figure 6 the development of the Poiseuille-type flow is shown using a local Chien model.
The predictions are globally in good agreement with the experiment, particularly near the
outlet. In Figure 7(a) the velocity profiles are compared with the experiment and with SMC
and DNS results. One notes that the DNS and SMC are in good agreement with the
experimental results in the upper part of the channel, while the k–e model at x=2.955 m
behaves correctly in the lower part of the channel. In the upper part, the flow resembles a pure
Poiseuille flow and the fm function of Chien produces a low level of turbulent viscosity, as
observed for the pure Poiseuille flow in Figure 4(a).

k profiles are compared in Figure 7(b). Note that near the upper wall none of the methods
are successful in reproducing the experimental curve, due to the excessive dimensions of the
hot wires used in Corenflos [7] experiment. One can observe in Figure 7(b) the overestimation
of the k level predicted by the k–e model with respect to the SMC curve, in the central region.
The same behaviour is found for the pure Poiseuille flow (Figure 4(b)). One notes also in
Figure 7(b) the large modification of the k profile between x=2.955 and 4.4 m, indicating that
the flow does not reach a fully developed condition at x=2.955 m, the last experimental
station.

To investigate the influence of the fm function on the results, Rodi–Mansour’s [2] fm function
with a sk=1.3 and Chien’s model using the following dissymmetric definition for distance
from the walls are also used in computations.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 83–103 (1999)
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Figure 10. (a) Development of turbulent kinetic energy for Poiseuille-type flow using the Chien model; (b) Develop-
ment of turbulent kinetic energy for Poiseuille-type flow using the Chien model.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 83–103 (1999)
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where ut1 and ut2 are the friction velocity of upper and lower walls respectively.
Figure 8(a) and (b) demonstrate that different calibrated fm functions would be necessary for

k and momentum equations for predicting correctly the velocity and k profiles. Results reveal
the drawbacks of eddy viscosity models to solve flows at very low Reynolds numbers. A more
rigorous solution consists of modifying the definition of the terms D and E, to take into
account the effects of a moving wall with a low level of production in the model.

Kinetic energy profiles are compared with experimental results in Figure 9, for x=1.855 m
and x=2.225 m. Unfortunately, the development of the third component of the normal
stresses (
w %2) has not been measured by Corenflos. Hence, the authors have estimated k as:

kexp=
u %2+26%2

2
. (20)

One notes that the predictions are in good agreement qualitatively. Note that this flow is
strongly anisotropic (see Corenflos [7]) and the estimation (20) introduces non-negligible errors
that make a quantitative comparison difficult.

In Figure 10(a) and (b), the development of k is depicted from x=1.69 m to x=4.4 m.
Corenflos observed a two step (two phase) development of the longitudinal turbulence

Figure 11. Development of mean velocity for intermediate-type flow using the Chien model, experimental profile at
x=2.955 m is compared with numerical profile at x=4.4 m.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 83–103 (1999)
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Figure 12. (a) Mean velocity profile for intermediate-type flow; (b) turbulent kinetic energy for intermediate-type flow.

intensity 
u %2. First, the peak of 
u %2 near the moving wall diminishes very rapidly due to the
abrupt decrease of turbulent production. The central region and upper part is not influenced
by the change of production near the moving wall. In the second phase, when k reaches its
minimum value, the global level of turbulence intensity in the central and upper part increases.
One can observe from Figure 10(a) and (b) that the same behaviour is reproduced by the k–e

model. In addition, Figure 10(b) shows a very slow development of the turbulent kinetic
energy k during the second phase. This point makes it difficult to conclude from the
experimental results the full development of the turbulent kinetic energy, because the last two
experimental stations are very close to each other (x=2.855 m and 2.955 m respectively).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 83–103 (1999)
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4.3. Intermediate-type flow

Figure 11 presents the development of the velocity profile using a local Chien model. Results
are in good agreement with the experiment, especially at the last section where the computa-
tions reproduce a zero slope for the velocity profile at the moving wall. Figure 12(a) and (b)
compare the velocity and k profiles with the second moment closure of Jakirlic et al. One notes
that the SMC predicts a Couette-type flow in this case, and it does not predict correctly the
k profile near the moving wall with respect to the experimental curve. One observes also a
rather large modification of k profile between (x=2.955 m and x=4.4 m).

Figure 13(a) and (b) show results obtained using Rodi–Mansour’s fm function and the
dissymmetric definition of distance from the walls. An excellent k profile is found for the
dissymmetric definition, although the model predicts a Couette-type flow, like the SMC

Figure 13. (a) Mean velocity for intermediate-type flow, x=2.955 m, influence of fm damping function; (b) turbulent
kinetic energy for intermediate-type flow, x=2.955 m, influence of fm damping function.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 83–103 (1999)
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Figure 14. (a) Development of turbulent kinetic energy for intermediate-type flow using the Chien model; (b)
development of turbulent kinetic energy for intermediate-type flow using the Chien model.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 83–103 (1999)
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Figure 15. Development of mean velocity for Couette-type flow using the Chien model, experimental profile at
x=2.955 m is compared with numerical profile at x=4.4 m.

prediction. Therefore, the same conclusion as the Poiseuille-type flow case can be drawn here.
Results reveal the importance of the definition of the fm function and the need to calibrate the
near-wall treatments for a flow near a moving wall with zero shear stress.

In Figure 14(a) and (b), the development of k is depicted from x=1.69 m to x=4.4 m. A
two phase development of k is found as for the Poiseuille-type flow.

4.4. Couette-type flow

Figure 15 presents the development of velocity profile using a local Chien model. It can be
seen that the velocity profile does not reach a fully developed condition at the last experimental
station. Deldicque states in his dissertation that he cannot ensure the full development of the
experimental 
u %2. Figure 16(a) and (b) compare the velocity and k profiles with the
experiment and SMC predictions. SMC agrees well with the experiment. However, if the
uncertainity concerning the full development of experimental k profiles is taken into account,
the SMC result is certainly not convincing. In addition, the SCM velocity profile is not in close
agreement with the experiment. It is noted that rather large differences between the k–e

model’s kinetic energy profile and the experimental curve near the moving wall. The authors
attribute the difference partly to the model’s deficiency near the moving wall and partly to the
fact that the model predicts perhaps a slower development compared with the experiment.
Experimental studies with a longer channel need to be conducted to elucidate this point.

In Figure 17(a) and (b), the development of k profiles is depicted from x=1.69 m to x=4.4
m. A two phase development of k is found as for the Poiseuille-type and intermediate-type
flow. Comparing Figures 10, 14 and 17, one observes that the developing length is a function
of the moving wall velocity.
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5. CONCLUSION

Developing Couette–Poiseuille flows have been studied in this work using the low Reynolds
number k–e model of Chien. Attention is devoted to obtain mesh-independent solutions and
to check the full development of flows, using different grid systems and different channel
lengths. Two different finite element formulations have been employed to examine the
influence of the discretization method on the results. Computations revealed the drawbacks of
an eddy viscosity model to predict correctly dissymmetric flows at a low Reynolds number of
5000. In summary, the results are strongly influenced by the definition of the damping function
fm, which controls the level of turbulent viscosity in the flow. In order to reproduce the
experimental profiles, highly tuned and calibrated k–e near-wall treatments would be neces-

Figure 16. (a) Mean velocity profile for Couette-type flow; (b) turbulent kinetic energy for Couette-type flow.
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Figure 17. (a) Development of turbulent kinetic energy for Couette-type flow using the Chien model; (b) development
of turbulent kinetic energy for Couette-type flow using Chien model.
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sary for each type of flow. Recourse to higher level closures, such as k–e–6% models that do
not require an eddy viscosity assumption might be a better solution. Research is in progress to
investigate the effects of a k–e–6% model on predictions. Rodi–Mansour’s complete k–e

model, which is based on the DNS data of a fully developed symmetric Poiseuille flow, needs
also to be studied in a subsequent work. However, Chien’s k�ẽ model behaves rather well in
reproducing essential features of these flows, such as a two phase development of k profiles
and a strong dependence of the moving wall velocity on the developing length. For the
Couette-type flow case, using a moving wall length two times longer than the length used in
the experimental study did not lead to a fully developed flow. Experimental work with a longer
channel might be necessary to explain such a slow development of Couette–Poiseuille flows.
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